Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Med Virol ; 96(3): e29484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402600

RESUMO

Antiviral therapy based on neuraminidase (oseltamivir) or polymerase (baloxavir marboxil) inhibitors plays an important role in the management of influenza infections. However, the emergence of drug resistance and the uncontrolled inflammatory response are major limitations in the treatment of severe influenza disease. Protectins D1 (PD1) and DX (PDX), part of a family of pro-resolving mediators, have previously demonstrated anti-influenza activity as well as anti-inflammatory properties in various clinical contexts. Herein, we synthetized a series of simplified PDX analogs and assessed their in vitro antiviral activity against influenza A(H1N1) viruses, including oseltamivir- and baloxavir-resistant variants. In ST6GalI-MDCK cells, the PDX analog AN-137B reduced viral replication in a dose-dependent manner with IC50 values of 23.8 for A/Puerto Rico/8/1934 (H1N1) and between 32.6 and 36.7 µM for susceptible and resistant A(H1N1)pdm09 viruses. In MTS-based cell viability experiments, AN-137B showed a 50% cellular cytotoxicity (CC50 ) of 638.7 µM with a resulting selectivity index of 26.8. Of greater importance, the combination of AN-137B with oseltamivir or baloxavir resulted in synergistic and additive in vitro effects, respectively. Treatment of lipopolysaccharide (LPS)-stimulated macrophages with AN-137B resulted in a decrease of iNOS activity as shown by the reduction of nitrite production, suggesting an anti-inflammatory effect. In conclusion, our results indicate that the protectin analog AN-137B constitutes an interesting therapeutic modality against influenza A virus, warranting further evaluation in animal models.


Assuntos
Dibenzotiepinas , Ácidos Docosa-Hexaenoicos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Morfolinas , Piridonas , Triazinas , Animais , Humanos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Farmacorresistência Viral , Neuraminidase
2.
Microorganisms ; 11(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37317069

RESUMO

Seasonal influenza A and B viruses may cause severe infections requiring therapeutic interventions. Baloxavir, the latest antiviral drug approved against those infections, targets the endonuclease activity encoded by the polymerase acidic (PA) protein. While appearing effective at cessation of viral shedding, baloxavir demonstrated a low barrier of resistance. Herein, we aimed to assess the impact of PA-I38T substitution, a major marker of baloxavir-resistance, on the fitness of contemporary influenza B viruses. Recombinant wild-type (WT) influenza B/Phuket/2073/13 (B/Yamagata/16/88-like) and B/Washington/02/19 (B/Victoria/2/87-like) viruses and their respective PA-I38T mutants were used to evaluate replication kinetics in vitro, using A549 and Calu3 cells, and ex vivo, using nasal human airway epithelium (HAE) cells. Infectivity was also assessed in guinea pigs. In the B/Washington/02/19 background, there were no major differences between the recombinant WT virus and its I38T mutant when viral replication kinetics were evaluated in human lung cell lines and HAE as well as in nasal washes of experimentally infected guinea pigs. By contrast, the I38T mutation moderately impacted the B/Phuket/2073/13 viral fitness. In conclusion, contemporary influenza B viruses that may acquire baloxavir-resistance through the PA-I38T substitution could retain a significant level of fitness, highlighting the importance of monitoring the emergence of such variant.

3.
Pathogens ; 11(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145480

RESUMO

Baloxavir marboxil (BXM) is an antiviral drug that targets the endonuclease of the influenza polymerase acidic (PA) protein. Antiviral resistance, mainly mediated by the I38T PA substitution, readily occurs in both A(H1N1) and A(H3N2) viruses following a single dose of BXM. Influenza B resistance to BXM remains poorly documented. We aimed to generate baloxavir-resistant contemporary influenza B/Yamagata/16/1988- and B/Victoria/2/1987-like viruses by in vitro passages under baloxavir acid (BXA) pressure to identify resistance mutations and to characterize the fitness of drug-resistant variants. Influenza B/Phuket/3073/2013 recombinant virus (rg-PKT13, a B/Yamagata/16/1988-like virus) and B/Quebec/MCV-11/2019 (MCV19, a B/Victoria/2/1987-like isolate) were passaged in ST6GalI-MDCK cells in the presence of increasing concentrations of BXA. At defined passages, viral RNA was extracted for sequencing the PA gene. The I38T PA substitution was selected in MCV19 after six passages in presence of BXA whereas no PA change was detected in rg-PKT13. The I38T substitution increased the BXA IC50 value by 13.7-fold in the MCV19 background and resulted in reduced viral titers compared to the wild type (WT) at early time points in ST6GalI-MDCK and at all time-points in human epithelial cells. By contrast, the I38T substitution had no impact on MCV19 polymerase activity, and this mutation was genetically stable over four passages. In conclusion, our results show a similar pathway of resistance to BXA in influenza B viruses highlighting the major role of the I38T PA substitution and suggest that I38T may differently impact the fitness of influenza variants depending on the viral type, subtype, or lineage.

4.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661516

RESUMO

The polymerase acidic (PA) I38T substitution is a dominant marker of resistance to baloxavir. We evaluated the impact of I38T on the fitness of a contemporary influenza A(H3N2) virus. Influenza A/Switzerland/9715293/2013 (H3N2) wild-type (WT) virus and its I38T mutant were rescued by reverse genetics. Replication kinetics were compared using ST6GalI-MDCK and A549 cells and infectivity/contact transmissibility were evaluated in guinea pigs. Nasal wash (NW) viral titres were determined by TCID50 ml-1 in ST6GalI-MDCK cells. Competition experiments were performed and the evolution of viral population was assessed by droplet digital RT-PCR. I38T did not alter in vitro replication. I38T induced comparable titres vs the WT in guinea pigs NWs and the two viruses transmitted equally by direct contact. However, a 50 %:50 % mixture inoculum evolved to mean WT/I38T ratios of 71 %:29 % and 66.4 %:33.6 % on days 4 and 6 p.i., respectively. Contemporary influenza A(H3N2)-I38T PA variants may conserve a significant level of viral fitness.


Assuntos
Vírus da Influenza A Subtipo H3N2/fisiologia , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Células A549 , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Cães , Farmacorresistência Viral , Cobaias , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Células Madin Darby de Rim Canino , Morfolinas/farmacologia , Nariz/virologia , Infecções por Orthomyxoviridae/transmissão , Piridonas/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Genética Reversa , Triazinas/farmacologia , Carga Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
5.
Rev Med Virol ; 31(3): e2175, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32975358

RESUMO

Neuraminidase inhibitors (NAIs), that currently include oseltamivir (Tamiflu® ), zanamivir (Relenza® ), peramivir (Rapivab® ) and laninamivir (Inavir® ), constitute an important class of antivirals recommended against seasonal influenza A and B infections. NAIs target the surface NA protein whose sialidase activity is responsible for virion release from infected cells. Because of their pivotal role in the transcription/translation process, the polymerase acidic (PA) and polymerase basic 1 and 2 (PB1 and PB2, respectively) internal proteins also constitute targets of interest for the development of additional anti-influenza agents. Baloxavir marboxil (BXM), an inhibitor of the cap-dependent endonuclease activity of the influenza PA protein, was approved in the United States and Japan in 2018. Baloxavir acid (BXA), the active compound of BXM, demonstrated a potent in vitro activity against different types/subtypes of influenza viruses including seasonal influenza A/B strains as well as avian influenza A viruses with a pandemic potential. A single oral dose of BXM provided virological and clinical benefits that were respectively superior or equal to those displayed by the standard (5 days, twice daily) oseltamivir regimen. Nevertheless, BXM-resistant variants have emerged at relatively high rates in BXM-treated children and adults. Consequently, there is a need to study the fitness (virulence and transmissibility) characteristics of mutants with a high potential to emerge as such variants can compromise the clinical usefulness of BXM. The purpose of this manuscript is to review the fitness properties of influenza A and B isolates harbouring mutations of reduced susceptibility to BXA.


Assuntos
Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Morfolinas/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Farmacorresistência Viral , Humanos , Vírus da Influenza A/isolamento & purificação
6.
Microorganisms ; 8(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322333

RESUMO

The prolonged treatment of immunosuppressed (IS) individuals with anti-influenza monotherapies may lead to the emergence of drug-resistant variants. Herein, we evaluated oseltamivir and polymerase inhibitors combinations against influenza A/H3N2 infections in an IS mouse model. Mice were IS with cyclophosphamide and infected with 3 × 103 PFU of a mouse-adapted A/Switzerland/9715293/2013 (H3N2) virus. Forty-eight hours post-infection, the animals started oseltamivir, favipiravir or baloxavir marboxil (BXM) as single or combined therapies for 10 days. Weight losses, survival rates and lung viral titers (LVTs) were determined. The neuraminidase (NA) and polymerase genes from lung viral samples were sequenced. All untreated animals died. Oseltamivir and favipiravir monotherapies only delayed mortality (the mean day to death (MDD) of 21.4 and 24 compared to 11.4 days for those untreated) while a synergistic improvement in survival (80%) and LVT reduction was observed in the oseltamivir/favipiravir group compared to the oseltamivir group. BXM alone or in double/triple combination provided a complete protection and significantly reduced LVTs. Oseltamivir and BXM monotherapies induced the E119V (NA) and I38T (PA) substitutions, respectively, while no resistance mutation was detected with combinations. We found that the multiple dose regimen of BXM alone provided superior benefits compared to oseltamivir and favipiravir monotherapies. Moreover, we suggest the potential for drug combinations to reduce the incidence of resistance.

7.
Viruses ; 12(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049959

RESUMO

Two antiviral classes, the neuraminidase inhibitors (NAIs) and polymerase inhibitors (baloxavir marboxil and favipiravir) can be used to prevent and treat influenza infections during seasonal epidemics and pandemics. However, prolonged treatment may lead to the emergence of drug resistance. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we evaluated in vitro combinations of baloxavir acid (BXA) and other approved drugs against influenza A(H1N1)pdm09 and A(H3N2) subtypes. The determination of an effective concentration inhibiting virus cytopathic effects by 50% (EC50) for each drug and combination indexes (CIs) were based on cell viability. CompuSyn software was used to determine synergism, additivity or antagonism between drugs. Combinations of BXA and NAIs or favipiravir had synergistic effects on cell viability against the two influenza A subtypes. Those effects were confirmed using a physiological and predictive ex vivo reconstructed human airway epithelium model. On the other hand, the combination of BXA and ribavirin showed mixed results. Overall, BXA stands as a good candidate for combination with several existing drugs, notably oseltamivir and favipiravir, to improve in vitro antiviral activity. These results should be considered for further animal and clinical evaluations.


Assuntos
Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Inibidores da Síntese de Ácido Nucleico/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Ácidos Carbocíclicos/farmacologia , Amidas/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Dibenzotiepinas/farmacologia , Cães , Combinação de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Sinergismo Farmacológico , Guanidinas/farmacologia , Células Madin Darby de Rim Canino , Morfolinas/farmacologia , Oseltamivir/farmacologia , Pirazinas/farmacologia , Piridonas/farmacologia , Ribavirina/farmacologia , Triazinas/farmacologia , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Zanamivir/farmacologia
8.
Antiviral Res ; 179: 104807, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32343991

RESUMO

Baloxavir marboxil (BXM) is a potent inhibitor of the polymerase acidic (PA) protein of influenza viruses. However, clinical trials predominantly involving influenza A(H1N1) and A(H3N2) infections showed that BXM exhibited a low barrier of resistance. Contrasting with influenza A viruses, BXM-resistant influenza B variants remain poorly documented. We evaluated the impact of I38 T/M and E23K PA substitutions, previously reported in influenza A viruses, on in vitro properties and virulence of contemporary influenza B recombinant viruses. Influenza B/Phuket/3073/2013 recombinant wild-type (WT) virus and the I38T, I38M and E23K PA mutants were assessed for their susceptibility to baloxavir acid (BXA), the active metabolite of BXM, by plaque reduction assays in ST6GalI-MDCK cells. Luciferase-based minigenome tests were performed to determine polymerase activity. Replication kinetics and genetic stability were evaluated in ST6GalI-MDCK cells. Virulence was evaluated in BALB/c mice. The I38T, I38M and E23K substitutions increased BXA IC50s values by 12.6-, 5.5-, and 2.6-fold, respectively, compared to the WT. Minigenome assays revealed a 46% loss of polymerase activity for the E23K substitution vs the WT while the I38T and I38M PA variants retained ≈80% of activity. Peak viral titers were comparable for the WT, I38T and I38M recombinants (7.95 ± 0.5, 7.45 ± 0.25 and 8.11 ± 0.28 logTCID50/mL), respectively, whereas it was significantly lower for the E23K mutant (6.28 ± 0.28 logTCID50/mL;P < 0.05 vs the WT). In mice, the WT, I38T and I38M recombinants induced mortality rates of 60%, 40% and 100%, respectively and similar lung viral titers were obtained for the three groups at days 3 and 6 p.i. In conclusion, the fitness of BXA-resistant I38T and I38M PA mutants appears unaltered in contemporary influenza B viruses warranting surveillance for their emergence.


Assuntos
Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Farmacorresistência Viral/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Morfolinas/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Animais , Ensaios Clínicos como Assunto , Cães , Feminino , Genoma Viral , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/efeitos dos fármacos , Recombinação Genética , Replicação Viral
9.
J Infect Dis ; 221(1): 63-70, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419295

RESUMO

BACKGROUND: Baloxavir is a cap-dependent inhibitor of the polymerase acid (PA) protein of influenza viruses. While appearing virologically superior to oseltamivir, baloxavir exhibits a low barrier of resistance. We sought to assess the impact of the common baloxavir-resistant I38T PA substitution on in vitro properties and virulence. METHODS: Influenza A/Quebec/144147/2009 (H1N1)pdm09 and A/Switzerland/9715293/2013 (H3N2) recombinant viruses and their I38T PA mutants were compared in single and competitive infection experiments in ST6GalI-MDCK cells and C57/BL6 mice. Virus titers in cell culture supernatants and lung homogenates were determined by virus yield assays. Ratios of wild-type (WT) and I38T mutant were assessed by digital RT-PCR. RESULTS: I38T substitution did not alter the replication kinetics of A(H1N1)pdm09 and A(H3N2) viruses. In competition experiments, a 50%:50% mixture evolved to 70%:30% (WT/mutant) for A(H1N1) and 88%:12% for A(H3N2) viruses after a single cell passage. The I38T substitution remained stable after 4 passages in vitro. In mice, the WT and its I38T mutant induced similar weight loss with comparable lung titers in both viral subtypes. The mutant virus tended to predominate over the WT in mouse competition experiments. CONCLUSION: The fitness of baloxavir-resistant I38T PA mutants appears relatively unaltered in seasonal subtypes warranting surveillance for its dissemination.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/tratamento farmacológico , Oxazinas/farmacologia , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/genética , Tiepinas/farmacologia , Triazinas/farmacologia , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Antivirais/uso terapêutico , Dibenzotiepinas , Cães , Feminino , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Concentração Inibidora 50 , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas , Mutação , Infecções por Orthomyxoviridae/virologia , Oxazinas/uso terapêutico , Fenótipo , Piridinas/uso terapêutico , Piridonas , RNA Polimerase Dependente de RNA/metabolismo , Tiepinas/uso terapêutico , Triazinas/uso terapêutico , Carga Viral/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Sci Rep ; 9(1): 16616, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719554

RESUMO

The mouse is the most widely used animal model for influenza virus research. However, the susceptibility of mice to seasonal influenza virus depends on the strain of mouse and on the strain of the influenza virus. Seasonal A/H3N2 influenza viruses do not replicate well in mice and therefore they need to be adapted to this animal model. In this study, we generated a mouse-adapted A/H3N2 virus (A/Switzerland/9715293/2013 [MA-H3N2]) by serial passaging in mouse lungs that exhibited greater virulence compared to the wild-type virus (P0-H3N2). Seven mutations were found in the genome of MA-H3N2: PA(K615E), NP(G384R), NA(G320E) and HA(N122D, N144E, N246K, and A304T). Using reverse genetics, two synergistically acting genes were found as determinants of the pathogenicity in mice. First, the HA substitutions were shown to enhanced viral replication in vitro and, second, the PA-K615E substitution increased polymerase activity, although did not alter virus replication in vitro or in mice. Notably, single mutations had only limited effects on virulence in vitro. In conclusion, a co-contribution of HA and PA mutations resulted in a lethal mouse model of seasonal A/H3N2 virus. Such adapted virus is an excellent tool for evaluation of novel drugs or vaccines and for study of influenza pathogenesis.


Assuntos
Adaptação Fisiológica , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/virologia , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Cães , Feminino , Hemaglutininas/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A Subtipo H3N2/fisiologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino/virologia , Camundongos/virologia , Camundongos Endogâmicos C57BL , Mutação/genética , Infecções por Orthomyxoviridae/patologia , Replicação Viral/genética , Sequenciamento Completo do Genoma
11.
Antiviral Res ; 170: 104561, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323237

RESUMO

As part of a 2015-2018 clinical trial of peramivir treatment for acute influenza infections in the elderly, an influenza B/Yamagata/16/1988-like isolate harbouring a Val430Ile neuraminidase (NA) substitution was recovered from a single patient. This substitution was detected in respiratory samples collected before and during peramivir treatment. In NA inhibition assays, oseltamivir, zanamivir and peramivir IC50s of the Val430Ile isolate were 4-, 15- and 16-fold higher compared to a wild-type (WT) strain. In reverse genetics experiments, the Ile430Val reversion restored the drug susceptible phenotype. The Val430Ile mutant and the WT strain had comparable replication kinetics in ST6GalI-MDCK cells and the NA mutation was stable after four passages in that cell line. Molecular dynamics simulations suggested that Val430Ile impacts the NA binding through a mechanism involving the catalytic Arg116 residue. The potential of some NA mutations not part of the active site to alter the susceptibility to NA inhibitors highlights the need to develop novel antiviral strategies against influenza B infections.


Assuntos
Substituição de Aminoácidos , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Neuraminidase/genética , Ácidos Carbocíclicos , Sequência de Aminoácidos , Animais , Ensaios Clínicos Fase III como Assunto , Ciclopentanos/uso terapêutico , Cães , Guanidinas/uso terapêutico , Humanos , Vírus da Influenza B , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Simulação de Dinâmica Molecular , Estudos Multicêntricos como Assunto , Mutação , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Genética Reversa , Replicação Viral/efeitos dos fármacos
12.
Emerg Infect Dis ; 25(4): 838-840, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30882323
13.
Antivir Ther ; 24(8): 581-587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32031540

RESUMO

BACKGROUND: Neuraminidase (NA) inhibitors (NAIs), including oseltamivir and zanamivir, play an important therapeutic role against influenza infections in immunocompromised patients. In such settings, however, NAI therapy may lead to the emergence of resistance involving mutations within the influenza surface genes. The aim of this study was to investigate the evolution of NA and haemagglutinin (HA) genes of influenza A(H1N1)pdm09 virus in an immunocompromised patient receiving oseltamivir then zanamivir therapies. METHODS: Nasopharyngeal swab (NPS) samples were collected between 27 January 2018 and 11 April 2018 from a haematopoietic stem cell transplant recipient. These include 10 samples collected either pre-therapy, during oseltamivir and zanamivir treatment as well as after therapy. The A(H1N1)pdm09 HA/NA genes were sequenced. The H275Y NA substitution was quantified by droplet digital RT-PCR assay. A(H1N1)pdm09 recombinant viruses containing HA mutations were tested by HA elution experiments to investigate in vitro binding properties. RESULTS: Oseltamivir rapidly induced the H275Y NA mutation which constituted 98.33% of the viral population after 15 days of oseltamivir treatment. The related HA gene contained S135A and P183S substitutions within the receptor-binding site. After a switch to zanamivir, 275H/Y and 119E/G/D mixed populations were detected. In the last samples, the double H275Y-E119G NA variant dominated with S135A and P183S HA substitutions. CONCLUSIONS: This report confirms that oseltamivir can rapidly induce the emergence of the H275Y substitution in A(H1N1)pdm09 viruses and subsequent switch to zanamivir can lead to additional substitutions at codon E119 resulting in multi-drug resistance. Such data additionally suggest a potential compensatory role for HA substitutions near the receptor binding site.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral Múltipla , Hospedeiro Imunocomprometido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Idoso , Antivirais/administração & dosagem , Antivirais/farmacologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Masculino , Neuraminidase/antagonistas & inibidores , Oseltamivir/administração & dosagem , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Transplantados , Zanamivir/administração & dosagem , Zanamivir/farmacologia , Zanamivir/uso terapêutico
14.
Viruses ; 11(1)2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583488

RESUMO

Three neuraminidase inhibitors (NAIs: Oseltamivir, zanamivir and peramivir) are currently approved in many countries for the treatment of influenza A and B infections. The emergence of influenza B viruses (IBVs) containing mutations of cross-resistance to these NAIs constitutes a serious clinical threat. Herein, we used a reverse genetics system for the current B/Phuket/3073/2013 vaccine strain to investigate the impact on in vitro properties and virulence of H136N, R152K, D198E/N, I222T and N294S NA substitutions (N2 numbering), reported by the World Health Organization (WHO) as clinical markers of reduced or highly-reduced inhibition (RI/HRI) to multiple NAIs. Recombinant viruses were tested by NA inhibition assays. Their replicative capacity and virulence were evaluated in ST6GalI-MDCK cells and BALB/c mice, respectively. All NA mutants (excepted D198E/N) showed RI/HRI phenotypes against ≥ 2 NAIs. These mutants grew to comparable titers of the recombinant wild-type (WT) IBV in vitro, and some of them (H136N, I222T and N294S mutants) induced more weight loss and mortality in BALB/c mice in comparison to the recombinant WT IBV. These results demonstrate that, in contemporary IBVs, some NA mutations may confer RI/HRI phenotypes to existing NAIs without altering the viral fitness. This reinforces the need for development of novel antiviral strategies with different mechanisms of action.


Assuntos
Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Vírus da Influenza B/genética , Vírus da Influenza B/patogenicidade , Infecções por Orthomyxoviridae/tratamento farmacológico , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza B/efeitos dos fármacos , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Mutação , Neuraminidase/genética , Genética Reversa , Virulência , Replicação Viral
15.
Antiviral Res ; 159: 26-34, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30219318

RESUMO

After 6 years of circulation in humans, a novel antigenic variant of influenza A(H1N1)pdm09 (i.e., A/Michigan/45/2015) emerged in 2015-16 and has predominated thereafter worldwide. Herein, we compared in vitro and in vivo properties of 2016 wild-type (WT) A/Michigan/45/15-like isolate and its H275Y neuraminidase (NA) variant to the original A/California/07/09-like counterparts. The H275Y mutation induced comparable levels of resistance to oseltamivir and peramivir without altering zanamivir susceptibility in both 2009 and 2016 isolates. In vitro, the two WT isolates had comparable replicative properties. The 2016-H275Y isolate had lower titers at 36 h post-inoculation (PI) (P < 0.05) while the 2009-H275Y titers were lower at both 24 h (P < 0.01) and 36 h PI (P < 0.001) vs the respective WTs. In mice, the 2016-WT isolate caused less weight losses (P < 0.001) and lower lung viral titers (LVTs) (P < 0.01) vs the 2009-WT. The LVTs of 2016-WT and 2016-H275Y groups were comparable whereas the 2009-H275Y LVTs were lower vs the respective WT (P < 0.01). Ferrets infected with the 2016-WT isolate and their contacts had higher nasal viral titers (NVTs) at early time points vs the 2009-WT group (P < 0.01). Also, NVTs of 2016-H275Y animals were lower vs the 2016-WT group at early time points in both infected (P < 0.01) and contact animals (P < 0.001). In conclusion, while the H275Y mutation similarly impacts the A/California/07/2009- and A/Michigan/45/2015-like A(H1N1)pdm09 NAs, the fitness of these isolates differs according to animal models with the 2016 virus being less virulent in mice but slightly more virulent in ferrets, potentially reflecting a period of cumulative changes in surface and internal genes.


Assuntos
Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Mutação , Neuraminidase/genética , Proteínas Virais/genética , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Farmacorresistência Viral Múltipla , Feminino , Furões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Oseltamivir/farmacologia
16.
Antiviral Res ; 154: 110-115, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29674164

RESUMO

Neuraminidase (NA) mutations conferring resistance to NA inhibitors (NAIs) are expected to occur at framework or catalytic residues of the NA enzyme. Numerous clinical and in vitro reports already described NAI-resistant A(H1N1)pdm09 variants harboring various framework NA substitutions. By contrast, variants with NA catalytic changes remain poorly documented. Herein, we investigated the effect of R152K and R368K NA catalytic mutations on the NA enzyme properties, in vitro replicative capacity and virulence of A(H1N1)pdm09 recombinant viruses. In NA inhibition assays, the R152K and R368K substitutions resulted in reduced inhibition [10- to 100-fold increases in IC50 vs the wild-type (WT)] or highly reduced inhibition (>100-fold increases in IC50) to at least 3 approved NAIs (oseltamivir, zanamivir, peramivir and laninamivir). Such resistance phenotype correlated with a significant reduction of affinity observed for the mutants in enzyme kinetics experiments [increased Km from 20 ±â€¯1.77 for the WT to 200.8 ±â€¯10.54 and 565.2 ±â€¯135 µM (P < 0.01) for the R152K and R368K mutants, respectively]. The R152K and R368K variants grew at comparable or even higher titers than the WT in both MDCK and ST6GalI-MDCK cells. In experimentally-infected C57BL/6 mice, the recombinant WT and the R152K and R368K variants induced important signs of infection (weight loss) and resulted in mortality rates of 87.5%, 37.5% and 100%, respectively. The lung viral titers were comparable between the three infected groups. While the NA mutations were stable, an N154I substitution was detected in the HA2 protein of the R152K and R368K variants after in vitro passages as well as in lungs of infected mice. Due to the multi-drug resistance phenotypes and conserved fitness, the emergence of NA catalytic mutations accompanied with potential compensatory HA changes should be carefully monitored in A(H1N1)pdm09 viruses.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/enzimologia , Neuraminidase/genética , Substituição de Aminoácidos , Animais , Domínio Catalítico , Cães , Feminino , Aptidão Genética/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Mutação , Neuraminidase/antagonistas & inibidores , Virulência/genética
17.
Antivir Ther ; 22(8): 711-716, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29082897

RESUMO

BACKGROUND: Peramivir is a parenteral neuraminidase inhibitor (NAI) approved for treating influenza infections in a few countries. We determined peramivir susceptibilities of several uncharacterized influenza A and B neuraminidase (NA) and haemagglutinin (HA) mutants selected with different NAIs. METHODS: Recombinant wild-type (WT) and mutant NA proteins were expressed in 293T cells and susceptibility to peramivir, oseltamivir and zanamivir was determined by NA inhibition assay using the MUNANA substrate. Recombinant/reassortant influenza A(H1N1), A(H3N2) and B HA mutants were rescued by reverse genetics and assessed by plaque size or viral yield assays for drug susceptibility. RESULTS: Recombinant R152K, I222K/T, G248R+I266V, Q312R+I427T and R371K (A[H1N1]pdm09); E41G, 1222L/V, Q226H and S247P (A[H3N2]) and D198Y, A246D/S/T and G402S (B) mutant NA proteins (N2 numbering) were analysed. Peramivir exhibited the lowest IC50 values against both influenza A and B WT NAs. Peramivir and oseltamivir generally shared similar phenotypes. Of note, peramivir retained activity against I222K/T (A[H1N1]pdm09), I222L/V (A[H3N2]) and A246T (B) mutants, which had reduced inhibition (RI) or highly RI (HRI) against oseltamivir. Cross-RI/HRI against the three NAIs was observed for R152K, R371K and Q312R+I427T (A[H1N1]pdm09); S247P (A[H3N2]) and D198Y (B) mutants. All tested recombinant/reassortant R208K (A/Puerto Rico/8/34 [H1N1]); A28T, R124M and K189E (A/Victoria/3/75 [H3N2]) and T139N (B/Phuket/3073/13) HA mutants were susceptible to peramivir in cell culture experiments. CONCLUSIONS: Peramivir is highly active against seasonal influenza subtypes. Although peramivir and oseltamivir generally share similar phenotypes, peramivir still possesses activity against some variants with RI/HRI against oseltamivir. Finally, NAI-induced HA substitutions alone did not significantly impact NAI susceptibility.


Assuntos
Antivirais/farmacologia , Ciclopentanos/farmacologia , Guanidinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Neuraminidase/antagonistas & inibidores , Ácidos Carbocíclicos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Mutação , Neuraminidase/genética , Neuraminidase/metabolismo , Vírus Reordenados , Recombinação Genética , Proteínas Virais/genética
18.
J Med Virol ; 89(12): 2239-2243, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28792077

RESUMO

The combination of azithromycin, an immunomodulator, with oseltamivir was compared to oseltamivir monotherapy in a lethal BALB/c model of influenza A(H1N1)pdm09 infection. Groups of 14-16 mice received oral oseltamivir (10 mg/kg once daily for 5 days, starting at day 2 post-inoculation) alone or combined to azithromycin (a single 100 mg/kg dose, injected intraperitoneally at day 3 post-inoculation). Based on survival rates, lung viral titers, and pro-inflammatory cytokine levels, the combination therapy did not provide obvious additional clinical/virological benefits over oseltamivir monotherapy. Additional studies are still needed to better define the potential role of adjunctive immunomodulatory therapy for severe influenza infections.


Assuntos
Antivirais/administração & dosagem , Azitromicina/administração & dosagem , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Oseltamivir/administração & dosagem , Animais , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Azitromicina/efeitos adversos , Quimioterapia Combinada , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Injeções Intraperitoneais , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Oseltamivir/efeitos adversos , Carga Viral
19.
Open Forum Infect Dis ; 4(3): ofx105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28852674

RESUMO

Anti-influenza drugs play major roles in the management of severe influenza infections. Neuraminidase inhibitors (NAIs), which are active against all influenza A subtypes and the 2 major influenza B lineages, constitute the only class of antivirals recommended for the control of influenza epidemics and eventual pandemics. Thus, the emergence of NAI resistance could be a major clinical concern. Although most currently circulating influenza A and B strains are susceptible to NAIs, clinical cases of influenza viruses harboring single or multiple NA substitutions or deletions conferring a cross-resistance phenotype to the 2 main NAIs (oseltamivir and zanamivir) have been reported, mostly in immunocompromised individuals. Moreover, such events seem to be more frequent in A(H1N1)pdm09 viruses containing the H274Y substitution together with other NA changes (I222R, E119D/G). This review summarizes the therapeutic regimens leading to the emergence of NAI cross-resistant influenza A and B viruses as well as the virologic properties of such variants.

20.
J Gen Virol ; 98(6): 1224-1231, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28631598

RESUMO

Influenza A(H1N1)pdm09 virus continues to circulate worldwide without evidence of significant antigenic drift between 2009 and 2016. By using escape mutants, we previously identified six haemagglutinin (HA) changes (T80R, G143E, G158E, N159D, K166E and A198E) that were located within antigenic sites. Combinations of these mutations were introduced into the A(H1N1)pdm09 HA plasmid by mutagenesis. Reassortant 6 : 2 viruses containing both the HA and NA genes of the A(H1N1)pdm09 and the six internal gene segments of A/PR/8/34 were rescued by reverse genetics. In vitro, HA inhibition and microneutralization assays showed that the HA hexa-mutant reassortant virus (RG1) escaped A(H1N1)pdm09 hyper-immune ferret antiserum recognition. C57Black/6 mice that received the vaccine formulated with A/California/07/09 were challenged with 2×104 p.f.u. of either the 6 : 2 wild-type (WT) or RG1 viruses. Reductions in body weight loss, mortality rate and lung viral titre were observed in immunized animals challenged with the 6 : 2 WT virus compared to non-immunized mice. However, immunization did not protect mice challenged with RG1 virus. To further characterize the mutations causing this antigenic change, 11 additional RG viruses whose HA gene contained single or combinations of mutations were evaluated in vitro. Although the RG1 virus was still the least reactive against hyper-immune serum by HAI testing, mutations G158E and N159D within the Sa antigenic site appeared to play the major role in the altered antigenicity of the A(H1N1)pdm09 virus. These results show that the Sa antigenic site contains the most prominent epitopes susceptible to cause an antigenic drift, escaping actual vaccine protection.


Assuntos
Deriva Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Mutação de Sentido Incorreto , Seleção Genética , Animais , Peso Corporal , Modelos Animais de Doenças , Feminino , Furões , Humanos , Pulmão/virologia , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Genética Reversa , Análise de Sobrevida , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...